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Synopsis 

A stochastic model has been proposed and partially validated for predicting the service life of a 
nominal population of polymethyl methacrylate films subjected to photolytic degradation. Here, 
service life is defined as the time after which an unacceptable portion of a nominal population of 
PMMA films subjected to photodegradation have failed failure occurs when a performance property 
of the film falls below a predesignated minimum value. The stochastic model has two parts. The 
first part uses a Poisson distribution in computing the probability that exactly K photon related 
chain scissions will occur in the film in the interval [0, t ) .  The parameter of the Poisson distribution 
is made functionally dependent on temperature and the intensity of radiation absorbed. The second 
part determines the probability that a performance property will be greater than a minimum value 
after K chain scissions. This part is called the damage process. Together, the two parts of the model 
form a compound Poisson process. The main points of the models are validated against 25 published 
data sets. The plausibility of the Poisson process was substantiated for modeling the number of 
chain scissions occurring in the interval [0, t ) .  Also, it was demonstrated that the expected change 
in two performance properties of the films was functionally related to the expected number of chain 
scissions. 

INTRODUCTION 

When a polymeric component is exposed to the sun, it degrades. Degradation 
is the result of changes in one or more properties of the component. With con- 
tinued exposure, these properties continue to degrade impairing the functioning 
of the component. When at least one of the important properties degrades pass 
a predesignated minimum value, the component is said to have failed. The time, 
corresponding to this first passage, is called the service life of the component (see 
Fig. 1). 

For a nominal population of components made from the same polymer and 
exposed to the same environmental and operating conditions, one often observes 
a large variation in the times to failure. Since these observed times to failure 
often span several decades of time, service life predictions based on the mean 
time to failure have little practical value. For a given application and service 
environment, a better criterion for making service life predictions would be to 
find the maximum time beyond which a specified portion of the nominal popu- 
lation survives. This criterion is stated in a probabilistic format. This proba- 
bility is represented in Figure 1 by R ( t )  (the shaded areas under the probability 
density functions) and can be computed from the parameters of the service life 
distribution. 
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Fig. 1. Schematic of change in the property value of a component with exposure time to a photo- 
degradation source. 

Traditionally, estimation of this probability, or, more importantly, of the 
parameters of the service life distribution, has been difficult. One reason is that 
the factors comprising a service environment vary widely from location to location 
both in their type and their intensity. For this reason, it is very important that 
the parameters of the service life distribution are made functionally dependent 
on the degradation variables. The most common experimental procedure for 
doing this is through the use of accelerated aging tests. Accelerated aging tests 
are laboratory experiments in which one or more of the factors encountered in 
a service environment (ultraviolet radiation, temperature, and moisture) are 
elevated to levels higher than normal. Accelerated aging tests are preferred to 
outdoor exposures because they are usually (1) less time-consuming, (2) less 
expensive, (3) capable of yielding results applicable to many different test lo- 
cations, and (4) more valuable for isolating the effect of individual and combined 
degradation factors. Estimates of the parameters of the life distributions at  these 
elevated levels are usually easy to obtain. Problems arise, however, in finding 
suitable mathematical models for making extrapolations to in-service condi- 
tions.2 

Besides accounting for the variability in times to failure, the mathematical 
model used for making these extrapolations must account for the effects of in- 
dividual and combined factors on the degradation of the component. I t  must 
also allow for more than one degradation mechanism. The complexity of this 
problem is recognized, particularly since in only a few cases is the effect of more 
than one degradation factor known.2 Based on recently published research, a 
stochastic model is proposed for predicting the service life of polymethyl 
methacrylate (PPMA) subjected to photodegradation. The rate of degradation 
is made functionally dependent on temperature and the intensity of the radiation 
absorbed. This rate dependence is qualitatively justified on the basis of pub- 
lished results. The proposed model is partially validated against 25 data 
sets. 

REVIEW OF PHOTODEGRADATION OF PMMA 

At temperatures below 130°C, the photodegradation of PMMA is almost ex- 
clusively the result of random main chain sci~sion.3-~ Crosslinking has not been 
observed to occur except in the presence of some  sensitizer^?^^ and thermal 
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degradation does not appear to be significant a t  these temperatures. For this 
reason, only equations having to do with random chain scission are reviewed. 

For a photochemical process, the relationship between incident radiation and 
the frequency of occurrence of a particular process is given by the quantum yield. 
For chain scission, the quantum yield &, is 

4CS = NCS/ lQ (1) 

where Nc,  is the number of chain scissions per unit time and I ,  is the number 
of quantum absorbed per unit time. Published values of the quantum yield of 
chain scission for PMMA are given in Table I. In almost every case, these 
quantum yield values were considered to be a constant. The value of Nc,  is 
obtained from measurements of the number average molecular weight, viz., 

(2) 

where Mno is the initial number average molecular weight and Mnt is the number 
average molecular weight at time t .  The number of quantum absorbed per unit 
time, I , ,  on the other hand, is determined using the Lambert-Beer law, given 
by 

Ncs = (Mno/Mnt - 1) 

In I l l 0  = -a1 (3) 
wherelo I0 is the radiation intensity a t  the surface of the film, I is the amount 
of radiation transmitted through the film, a is the absorption coefficient, and 
1 is the film thickness. The intensity of radiation absorbed by the film is given 
by 

(4) 

where both the amount of radiation absorbed, I,, and the quantum yield of chain 
scission, &,, are wavelength-dependent. 

Given a specimen of thickness I! absorbing I ,  photons of wavelengths having 
sufficient energy required for chain scission (see Refs. 5, l l -13  for a discussion 
of a threshold wavelength), then the total number of chain scissions in time t for 
a block of material of unit area and thickness 1 is given by 

(5) 
where Ap/Mno is a scaling factor to convert the number of scissions per molecule 
to the total number of scissions in a volume of unit cross section and thickness 
1, p is the density of PMMA, having a value of 1.17 g/cm3, and A is Avogadro’s 
number. In the case of monochromatic light, eq. (5) can be solved explicitly by 
experimentally determining the number of quantum absorbed, I,, and substi- 
tuting this value into eq. (1) and solving for quantum yield. In the case of 
polychromatic light, however, it is difficult to experimentally determine the 
relationship between the amount of radiation absorbed at each wavelength and 
the corresponding quantum yield of chain scission. In this case, the expected 
number of chain scissions per unit time, I,&,, can be found by plotting the right 
hand side of eq. (5) vs. time. 

With each chain scission, damage results in the film. Two indicators of 
damage, which will be used to demonstrate the service life prediction method- 
ology, are changes in the number average molecular weight and the glass tran- 

I, = I0 - I 

Ia4cd = (Mno/Mnt - 1)Ap/Mno 
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sition temperature. The mathematical expressions indicating change in these 
properties as a function of the number of chain scissions are now developed. 

The initial number average molecular weight M,, is defined by 

where mi is the molecular weight of a polymer molecule with degree of poly- 
merization i and ni is the number of molecules in the sample having degree of 
polymerization i; therefore, Znimi is the total mass of the polymer and Zni is 
the total number of polymer chains in the sample. 

After K chain scissions have occurred in the film, the new number average 
molecular weight Mnk is given by 

Mnk = Cnimi/(Cni + K )  (6) 

Assuming that little or no mass is loss as the material degrades, eq. (6) can be 
simplified to 

(7) 
where A1 is a constant and A2 is a function of the initial molecular weight 

Another indicator of damage to the film is a change in the glass transition 
temperature. Beevers and White14 give an equation of the form 

(8) 
for relating glass transition temperature to number average molecular weight. 
Here 7'; is the glass transition temperature for a PMMA polymer having infinite 
molecular weight (published value 387"KI4 and C is an empirical constant 
(published value 2.1 X lo5 14). Substituting eq. (7) into eq. (8), one obtains 

(9) 

which is linear with respect to total number of chain scissions. 
In the next section, a stochastic model for the photodegradation of PMMA 

is presented incorporating the above facts. The objective of this section is to 
develop an expression for the probability, R(t), that an important property of 
PMMA is greater than a predesignated minimum value, when PMMA is 
subjected to a photolytic source for an interval t .  

Mnk = A1/(A2 + K )  

Mno. 

Tg = Tg" - CM,' 

Tg = Tg" - C(A2 + K)/A1 

STOCHASTIC MODEL FOR THE PHOTODEGRADATION OF 
PMMA 

In a typical photolysis experiment, a film is positioned at  normal incidence 
and at  a fixed distance from a radiation source. If the radiation intensity at  the 
surface of the exposed film is l o ,  then lot  photons strike the surface of the film 
in the interval [0, t ) .  Of these photons, only a fraction, p ,  is actually absorbed 
by the film. This fraction is equal to 1 - I/lo. The event of a photon absorption 
can be considered as a Bernoulli triall5; the number of photons absorbed by the 
film, Nt , has a binomial distribution with an expected value, plot;  that is, 

Prob(N, = n)  = b ( n ; l o t , p )  
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Here, the number of photons impacting the film is very large and p is small: 
therefore, the binomial distribution can be approximated by the Poisson dis- 
tribution with almost no error; thus, 

b(n; l o t ,  P )  = m; P l o t )  
where 

P ( n ; p l o t )  = e-pIot(plot)n/n!  for n = 0,1,2,  - (10) 

Although Nt photons are absorbed, only a fraction of these actually result in 
chain scissions. This fraction is the average quantum yield of main chain scis- 
sion, & [see eq. (l)]. The magnitude of the quantum yield is controlled to a large 
extent by a mixture of two processes-a nonphotooxidative process and a pho- 
tooxidative process3 For thin films and low temperatures, the rate of photo- 
degradation appears to be linear with time (references in Table I); accordingly, 
the expected number of chain scissions in the interval [0, t )  is given by 

E ( K )  = P4cslot (11) 

A t  low temperatures, the mechanisms causing photodegradation have been 
identified by Fox et al.4 and G ~ p t a . ~  These reactions are characterized as being 
nonphotooxidative and as having low quantum yields. As the film thickness 
and temperature increase, however, photooxidation becomes increasingly im- 
portant.3 At  sufficiently high temperatures (temperatures close to the glass 
transition temperature) and radiation intensities, the diffusion of oxygen limits 
the rate of photooxidation in PMMA.3 Even a t  these high temperatures, how- 
ever, a mixture of the photooxidative and nonphotooxidative processes is present. 
For this mixture, it has been shown by FukushimalG that a power law adequately 
models the number of chain scissions as a function of time, that is, 

= PdJcs~otm (12) 

where from theoretical considerations 0.5 < m < 1.0. Equation (11) is a special 
case of eq. (12). In eq. (12), the exponent should have a value close to 0.5 when 
photooxidation predominates and the diffusion of oxygen obeys Fick’s law.3 The 
exponent should have a value close to 1 for thin films when nonphotooxidative 
processes dominate photodegradation. The adequacy of the power law for 
predicting the number of chain scissions as a function of time is tested in the 
Results and Discussion section. 

In eq. (12), the time axis is transformed using a power law. Since this is a 
homogeneous transformation, the Poisson probability distribution is preserved. 
Therefore, the probability that exactly K chain scissions occur in the time interval 
[0, t )  is given by 

(13) P(k;h7)  = e-X7(X7)k/k! for k = 0, 1,2, - - - 
where 

and 
7 = t m  

As before, the expected number of chain scission and the variance of that number 
are 

A 7  = p&Jotm 
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E ( K )  = XT (14) 

and 

var(K) = XT (15) 

Note that the variance increases with exposure time. For consistency, the symbol 
t is used for time in the remainder of this paper, since the Poisson distribution 
is preserved for a homogeneous transformation of the time axis. 

As the temperature and intensity of radiation absorbed are increased, the 
Poisson parameter X must be modified to reflect changes in the quantum yield 
of main chain scission. (The fraction of photons absorbed by the film, p ,  is as- 
sumed to remain constant). It is hypothesized that this relationship is ade- 
quately described by 

where the first term is the Arrhenius acceleration factor and the second term is 
an acceleration factor for intensity of radiation absorbed. Also, To is a reference 
absolute temperature, T is an absolute temperature, I ,  is a reference intensity 
of radiation absorbed, I ,  is an intensity of radiation absorbed, A0 is the expected 
number of main chain scissions occurring at  the reference temperature To and 
the reference intensity of radiation absorbed level I,, and n is an empirical 
constant which for transparent films, appears to have a value of 1.2J7-19 For 
opaque films, n appears to have a value less than l.I7 E is an activation energy, 
and R is the gas constant. 

Equation (16) is consistent with Dan and Guillet’s20 equation for the effect 
of temperature on quantum yield for the photodegradation of a copolymer of 
PMMA and Koike and Tanayka’s17 equation for combined temperature and 
radiation on the photodegradation of different polymers. It is also qualitatively 
consistent with the experimental results of Dickens et al.3 for the photodeg- 
radation of PMMA. A t  low temperatures, Dickens et  al. attributed the low 
quantum yield of main chain scission and the almost uniform degradation 
through the thickness of the film to the efficiency of the cage effect. As the 
temperature increases, however, more radicals are able to escape the cage and 
react with oxygen, producing alkoxyl radicals. Photooxidation takes place 
through a /3-scission of these alkoxyl radicals. The proportional increase in the 
number of radicals escaping the cage and reacting with oxygen as the temperature 
increases is modeled in eq. (16) by the Arrhenius acceleration factor. The effect 
of an increase in intensity of radiation absorbed is to increase the number of free 
radicals. A t  low temperatures, an increase in the intensity is directly related 
to an increase in the number of chain scissions; hence, the exponent in eq. (16) 
has a value of one.2,4J8J9 At sufficiently high intensities of radiation absorbed 
and a t  sufficiently high temperatures, however, initiation of new radicals is no 
longer rate limiting. Instead, the diffusion of oxygen becomes rate limiting.3 
In this case, the value of the exponent in eq. (16) has a value less than 1. 

To account for variability in the properties of the components, the property 
value Q is considered to be a random variable. The probability density function 
of this property, prior to exposure to a photodegradation source, is given byfo(q). 
After K chain scissions, the new probability density function for the property 
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Q is denoted by f ~ ( q )  for K = 0,1,2, - - - . From the standpoint of service life 
prediction, the probability that the property value for a film is greater than a 
specified minimum value q after the first K chain scissions is given by 

where 

1 3 Fo(q) 3 F&) 3 - * - F K - I ( Q )  3 F&) (18) 

for all possible K. Note that eq. (18) allows for the film to be in a failed state 
a t  the time of installation and requires that damage be accumulated as the 
number of chain scissions increases; i.e., the property value cannot improve with 
increasing chain scissions. Equations (17) and (18) give the probability of sur- 
viving the first K chain scissions. The probability that the film is in a failed state 
after the first K chain scissions is given by 

(19) 
If chain scissions occur randomly in time as events in a Poisson process, then 

the probability of exactly k chain scissions occurring in a time period of length 
t is given by eq. (131, and the corresponding probability that the property value 
of interest is greater than the minimum value is given by eq. (17). The total 
probability R(t) that the material survives beyond time t is 

F K ( Q )  = 1 - G d q )  

for X > 0 and t 3 0. Equation (20) defines a compound Poisson process and is 
equal to the shaded areas under each probability density function in Figure 1. 
An excellent review of the properties of the compound Poisson process is given 
by Esary, Marshall, and Proschan.21 Equation (20) is of interest to in-service 
life prediction because it directly computes the probability of survival for pho- 
tolytically degraded material exposed for a time t .  More importantly, the model 
can be extended to include changes in the intensity of the degradation factors 
as a function of time; such a model is termed a cumulative damage model. This 
is an important attribute of the compound Poisson model, because the intensity 
of the degradation factors varies naturally with the diurnal cycle. 

RESULTS AND DISCUSSION 

The major objectives of this paper are to demonstrate the plausibility of the 
Poisson process [eq. (13)] for modeling the arrival of bond rupture-causing 
photons and to substantiate the statement that the expected damage to the film 
is only a function of the number of chain scissions. The effect of temperature 
and intensity of radiation absorbed on the expected number of chain scissions 
[eq. (1611 and the distributional form of the damage function F K ( ~ )  [eq. (17)] 
could not be validated due to the lack of published data. 

The data for validating eq. (13) and the assumption that damage to the film 
is only a function of the number of chain scissions comes from three sources: (1) 
Abouelezz and Waters,22 (2) Abouelezz and Waters,23 and (3) S h ~ l t z . ~  Alto- 
gether, 25 data assets were used. (Shultz's film D data were not used in the 
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Fig. 2. Number of bond ruptures vs. exposure time for data sets 1 (A) ,  2 (n), 12 (O), and 13 
(0). 

analysis.) The 25 data sets differ from each other by one or more of the following: 
(1) initial molecular weight, (2) radiation source, (3) ambient environment, and 
(4) film thickness (see Table 11). Also different among the data sets was the 
method used in measuring the average molecular weights. The measurements 
in Refs. 22 and 23 were made using a gel permeation chromatograph. A vis- 
cometer was used in Ref. 14. For photolytically degraded thick films, errors arise 
in estimating the number average molecular weight from the viscosity average 
molecular  eight.^^?^^ These estimation errors arise because the number of 
photons absorbed varies with film depth. To compensate for this variation, a 
correction factor is commonly applied. For Shultz’s data, Gardner and Ep- 

correction factor was used when computing number average molecular 
weights. 

To validate the statement that the Poisson process adequately describes the 
number of chain scissions in the interval (0, t ] ,  a simple check was made. For 
nonoverlapping time intervals, the Poisson distribution may be used if the ex- 
pected number of chain scissions does not depend on previous history and if the 
expected number of chain scissions is only a function of the length of the interval 
times a constant26; that is, 

(21) 

where t ,  s L 0 and are intervals of time. Equation (21) is used as the basis for 
model validation. As Cinlar26 points out, eq. (21) is the simplest qualitative 
characterization of the Poisson process. It is especially useful here, because the 
more fundamental properties of the Poisson process cannot be experimentally 
validated and strong a priori evidence exists suggesting that the number of chain 
scissions in any future time interval is independent of past history. This a priori 
evidence comes from the success of the Poisson processes for modeling the arrival 

E[Kt+, - Kt I&; p 6 t ]  = As 
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Fig. 3. Number of bond ruptures vs. exposure time for data sets 3 ( A ) ,  4 (a), 14 ( 0 )  and 15 
(0). 

of electromagnetic radiation in a large number of other processes including health 
p h y s i ~ s , ~ ~ , ~ ~   electronic^,^^ and physics.lJ0 

Abouelezz and Waters’ number of chain scissions versus exposure time data 
is plotted in Figures 2-6. Shultz’s data are plotted in Figures 7 and 8. Abouelezz 
and Waters’ films were very thin (0.002 cm); therefore, by eq. 11 and previous 
empirical evidence (see the references given in Table I), one would expect the 

IW MUIONS 

Fig. 4. Number of bond ruptures vs. exposure time for data sets 5 (A), 6 (a), 16 ( O ) ,  and 17 
(0). 
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TABLE I11 
Expected Number of Chain Scissonsh for All 25 Data Sets 

Expected number 
Power law chain scissons/ Correlation 
exponent Thickness s-cm3 coefficient 

Data set m (cm) x r 

1 1.0 0.002 2.70 x 1014 0.990 
2 1.0 0.002 1.98 x 1014 0.997 
3 1.0 0.002 2.64 x 1013 0.998 
4 1.0 0.002 2.32 x 1013 0.999 
5 1.0 0.002 1.14 X 10" 0.999 
6 1.0 0.002 4.79 x 10'0 0.999 
7 1.0 0.002 2.04 X 10" 0.999 
8 1.0 0.002 3.10 X 1Olo 0.994 
9 1.0 0.002 2.52 X 1Olo 0.996 

10 1 .o 0.002 1.08 x 10" 0.997 
11 1.0 0.002 1.06 X 10" 0.999 
12 1.0 0.002 2.62 x 1014 0.990 
13 1.0 0.002 1.93 x 1014 0.997 
14 1.0 0.002 2.57 x 1013 0.996 
15 1.0 0.002 2.08 x 1013 0.996 
16 1.0 0.002 8.97 X 1Olo 0.999 
17 1.0 0.002 4.13 X 1O'O 0.999 
18 1.0 0.002 1.59 X 1Olo 0.999 
19 1.0 0.002 2.32 X 1O1O 0.996 
20 1.0 0.002 1.98 X 1Olo 0.997 
21 1.0 0.002 8.32 X 1O'O 0.997 
22 1 .o 0.002 8.69 X 1 O l o  0.999 
23 0.91 0.0207 2.00 x 1014 0.982 
24 0.93 0.107 9.31 x 1014 0.993 
25 0.50 0.220 3.61 x 1015 0.988 

average number of chain scissions to be linear with time. This appears to be an 
adequate model since the correlation coefficients, which give a measure of the 
goodness of fit of a proposed model, are all greater than 0.99 (Table 111). De- 
viations from the proposed model do occur after very long exposure times. For 
data sets 1 and 12, the observed number of chain scissions is greater than expected 
(see Fig. 2). For data sets 2 and 13, the observed number of chain scissions is 
less than expected (see Fig. 2). These deviations are consistent with the model, 
however, since the variance [eq. (15)] increases with increasing exposure time. 

Shultz's films (data sets 23-25) were between 10 and 110 times thicker than 
those used by Abouelezz and Waters. With increasing film thickness, diffusion 
processes begin to dominate the photodegradation process By eq. 12, the mix- 
ture of photodegradation and diffusion process can be adequately modeled using 
a power law. A power law fit, using least-square analysis, was made to data sets 
23,24, and 25. The results are shown in Figures 7 and 8. As expected, the ex- 
ponent for the power law falls between 0.5 and 1.0 (see Table 111). With in- 
creasing thickness, the exponent tends toward a value of 0.5. Again, correlation 
coefficients for data sets 23-25 were high indicating that power law adequately 
describes the arrival of chain scission causing photons. Since both eqs. (11) and 
(12) are linear with time and appear to be adequate models for predicting the 
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TIHE (SECI mum 
Fig. 5. Number of bond ruptures vs. exposure time for data sets 7 (A), 8 ( o ) ,  9 (0) ,18 (0 ) ,19  (0) 

and 20 ( v). 

number of chain scissions as a function of time for thin and thick specimens, eq. 
(21) is satisfied; hence, the Poisson model is substantiated. The slopes of the 
regression lines in Figures 2-8 are equal to the expected number of chain scissions 
per unit time [A in eq. (13)]. The values of X are tabulated in Table I11 for all 
data sets. 

Two indicators of damage have been used in this paper-changes in the 
number average molecular weight and in the glass transition temperature. These 
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Fig. 6. Number of bond ruptures vs. exposure time for data sets 10 (A), 11 (a), 21 ( O ) ,  and 22 
(0). 
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Fig. 7. Number of bond ruptures vs. exposure time for data set 23. 

indicators were chosen for the demonstration of the service life prediction 
methodology. In practice, damage indicators should be selected on the basis 
of their ability to predict performance. From eq. (20), the distributional form 
of both properties [eq. (17)] must be known. As mentioned before, these dis- 
tributions are not known, as yet, due to lack of published data. The expected 
value of each of these properties as a function of the number of chain scissions 
is given by eqs. (8) and (9). These expectations are fitted to the observed values 
in Figures 9 and 10. The expected value of the number average molecular weight 
is given approximately by 

(22) 
and the expected value of the glass transition temperature, assuming Beevers 
and White's model is correct, is given by 

E[Mn,] N AI/(Az + A t )  

The number average molecular weight is plotted as a function of exposure time 
in Figure 9 for Abouelezz and Waters' 22,23 data sets 1, 2, 12, and 13. The ex- 
pected number average molecular weight curves [eq. (22)] are superimposed on 
these plots using X values given in Table 111. Plots for the other 21 data sets are 
just as good. 

Changes in glass transition temperature as a function of exposure time are 
plotted in Figure 10 for data sets 1,2,12, and 13. The expected glass transition 
temperature curves [eq. (23)] are superimposed in Figure 10 using the [A values 
tabulated in Table 111. The fit of eq. (23) to the data was not as good as expected. 
A much better fit was obtained when glaass transition temperature was directly 
related to the number average weight; i.e., Tg = T," - CMn as opposed to eq. (5). 
Nevertheless, eq. (23) appears to be an adequate predictor of change in glass 
transition temperature. 
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Fig. 8. Number of bond ruptures vs. exposure time for data sets 24 (A) and 25 (0) 

SUMMARY A N D  CONCLUSIONS 

A stochastic model [eq. (20)] has been proposed and partially validated for 
predicting the service life of a nominal population of poly(methy1 methacrylate) 
films subjected to photolytic degradation. Here, service life is defined as the 
time after which an unacceptable proportion of a nominal population of PMMA 
films subjected to photodegradation have failed; failure occurs when a perfor- 
mance property of the film falls below a predesignated minimum value. The 
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Fig. 9. Change in weight average molecular weight a6 a function of the number of bond ruptures 
for data sets 1 (A), 2 (O), 12 (O), and 13 (0). 
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Fig. 10. Change in glass transition temperature as a function of the number of bond ruptures for 
data sets 1 ( A ) ,  2 ( 0 ) , 1 2  ( 0 )  and 13 (0). 

stochastic model has two parts. The first part uses a Poisson distribution in 
computing the probability that exactly K photon related chain scissions will occur 
in the film in the interval [0, t ) .  This part is called the arrival process. The 
second part determines the probability that a performance property will be 
greater than a minimum value after K chain scissions. This part is called the 
damage process. Together, the two parts of the model form a compound Poisson 
process. 

For service life prediction, the proposed stochastic model is attractive for 
several reasons: 

1. The parameters of the compound Poisson process are expressed in terms 
of the physics of failure of the polymer. 

2. The arrival process only models those photon absorptions resulting in chain 
scissions; other nonchain scission causing processes are ignored. This economy 
greatly reduces the number of rate constants which would otherwise have to be 
estimated. 

3. The rate of chain scissions is made a function of the temperature and ir- 
radiance levels. 
4. Damage to the film can be any of a wide range of possible performance 

properties. It is necessary, however, that changes in performance be related to 
main chain scissions and that damage increases with an increasing number of 
chain scissions. 

5. Finally, the stochastic model can be extended to include cumulative damage 
effects; i.e., it permits changes in the intensity of the degradation factors over 
time. This is an important feature of the compound Poisson model because the 
intensity of almost all weathering factors varies with the diurnal cycle. 

In this paper, the entire model could not be validated due to the unavailability 
of suitable published data. Twenty-five published data sets were available, 
however, to verify the main points of the model. The plausibility of the Poisson 
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process was validated for modeling the number of chain scissions occurring in 
the interval [0, t ) .  Also, it was demonstrated that the expected change in two 
performance properties of the films were functionally related to the expected 
number of chain scissions. In on-going research at  the National Bureau of 
Standards, a more extensive experiment is being conducted to provide data to 
validate the entire model. 

The author wishes to acknowledge the many comments he received from his colleagues a t  the 
National Bureau of Standards, in particular, Dr. Brian Dickens of the Polymers Division and Dr. 
James Lechner of the Center for Applied Mathematics. He also thanks Professor Samuel Saunders 
of the Washington State University for discussions on the Poisson process. 

APPENDIX: NOMENCLATURE 

Abbreviations 

binominal distribution with parameters n and p 
mathematical expectation 
probability density function for critical property q after K chain scission 
cumulative distribution function for critical property q after K chain scissions 
probability that critical property q has a value greater than a predesignated minimum 
value after K chain scissions 
reliability or the probability the material survives beyond time t 
natural logarithm 
Poisson distribution with parameter h 
probability of the event described within parentheses 
mathematical variance 

Symbols 

Poission parameter for average number of main chain scissions per unit time 
average number of main chain scissions per unit time a t  reference temperature 2'0 and 
reference intensity radiation of absorption, I, 
density of PMMA 
quantum yield of main chain scission 
absorption coefficient 
Avogadro's number 
empirical constants 
empirical constant 
activation energy 
radiation intensity transmitted through the film 
radiation intensity at surface of film 
reference intensity of radiation absorbed 
intensity of radiation absorbed or number of quantum absorbed per unit time 
observed number of main chain scissions 
number of main chain scissions random variable 
thickness of film 
probability of a photon being absorbed 
power law exponent 
initial number average molecular weight 
number of average molecular weight after k main chain scissions 
number average molecular weight after exposure to a photolytic source for an interval 
t 
intensity of radiation absorbed acceleration factor exponent 
number of chain scissions per unit time 
number of photon absorptions in the interval t 
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R gas constant 
t time 
T absolute temperature 
TO reference absolute temperature 
T2 glass transition temperature 
T," glass transition temperature for PMMA having an infinite molecular weight 
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